

NSTAR Service Life Assessment

March 29, 2000

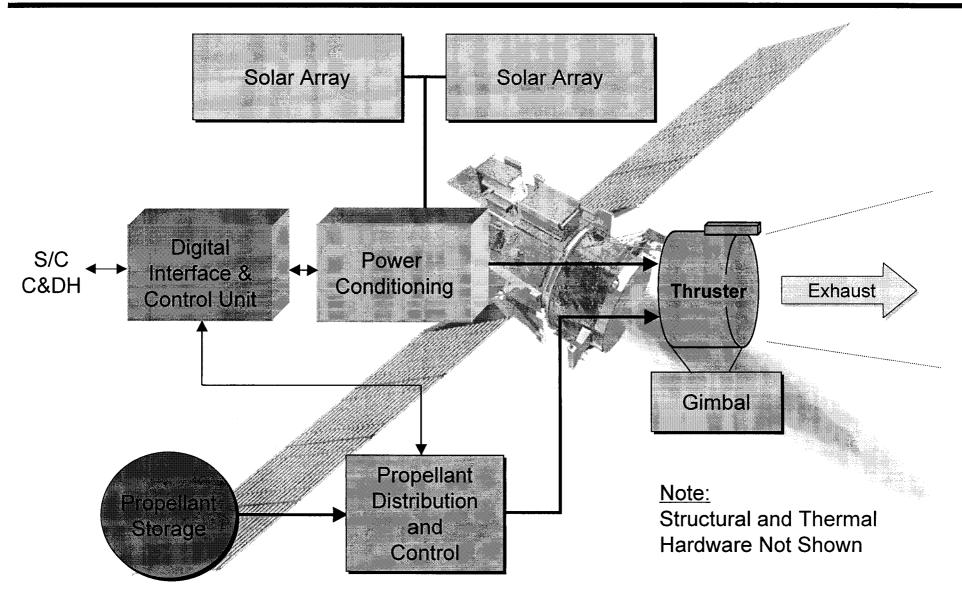
John Brophy, Mike Marcucci, James Polk and Gani Ganapathi

Jet Propulsion Laboratory
California Institute of Technology

Mike Patterson and John Hamley

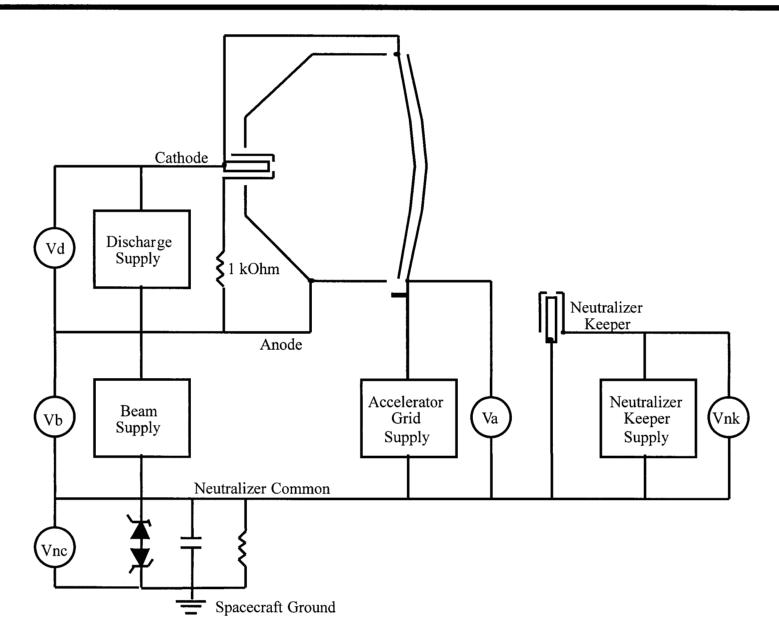
Glenn Research Center

Purpose of this Briefing


- Present results of flight validation and ground testing of the NSTAR SEP system service life
 - Results of Peer-Review at JPL by GRC, MSFC and JPL Personnel

 Recommend to NASA that the service life of the NSTAR ion engine is a xenon throughput of 130 kg

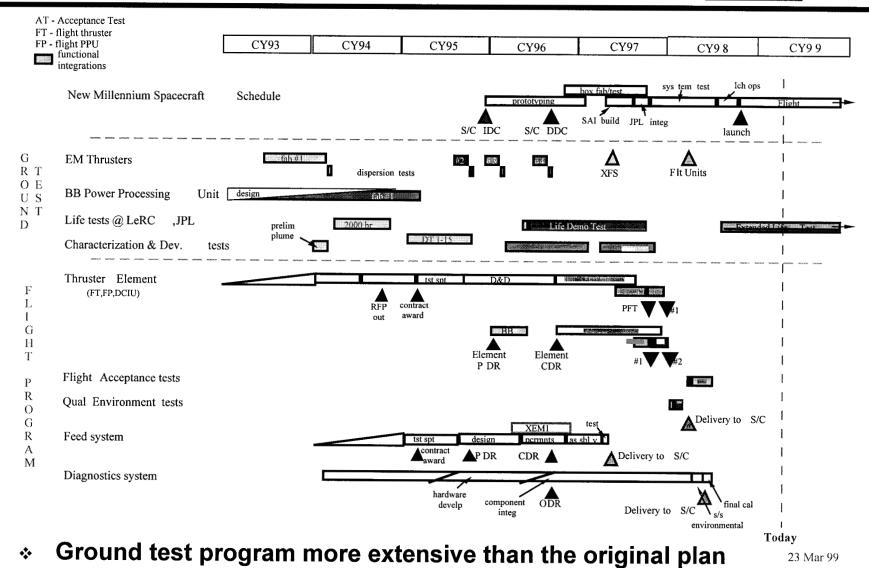
NSTAR SEP/NSTAR System Elements



03/29/2000

Ion Engine Operation

NSTAR Technology Validation Goals



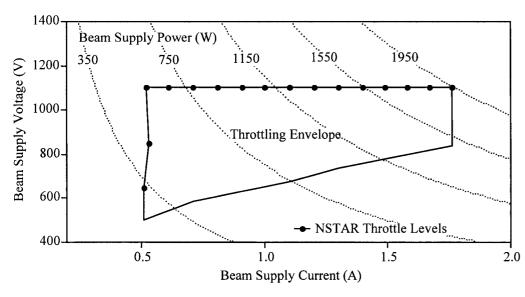
- Demonstrate that the NASA 30-cm diameter ion engine has sufficient service life to perform missions of near-term interest
- Demonstrate through a flight test that the ion propulsion system hardware and software could be flight qualified and successfully operated in space, and demonstrate control and navigation of an SEP spacecraft
- Output
 Understand the interactions between the lone Propulsion System and the spacecraft

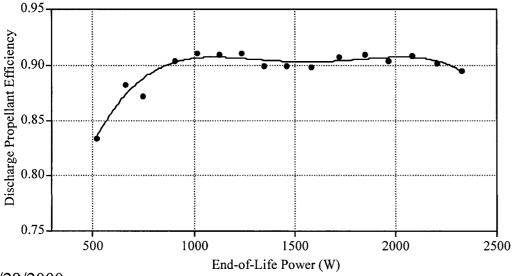
NSTAR Project Schedule

- 13,780 total test hours on 4 EM thrusters
- 03/29/2000 12,245 flight thruster hours (and counting)

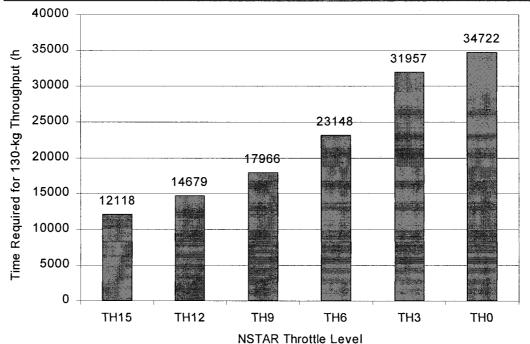
What We Learned From the Flight on Deep Space 1 (after 3,575 hours of thrusting)

Thruster Operation In Space is the Same as on the Ground




- Thruster performance in space agrees very well with ground test data
- Ion optics behavior in space agrees very well with ground-test data
- Accelerator grid impingement currents are slightly lower (i.e. better) than ground measurements
- Recycle rate is lower (i.e., better) in space
- Discharge voltage the same or lower (i.e. better) in space
- Neutralizer keeper voltage is lower (i.e. better) in space

The NSTAR Throttling Strategy


- NSTAR uses a maximum lsp throttling profile
- Propellant utilization
 efficiency is a compromise
 between engine efficiency
 and engine life
- The 130-kg throughput service life is applicable to all throttling profiles which have an average engine input power of ≤ 2.14 kW

NSTAR EOL Throttle Table

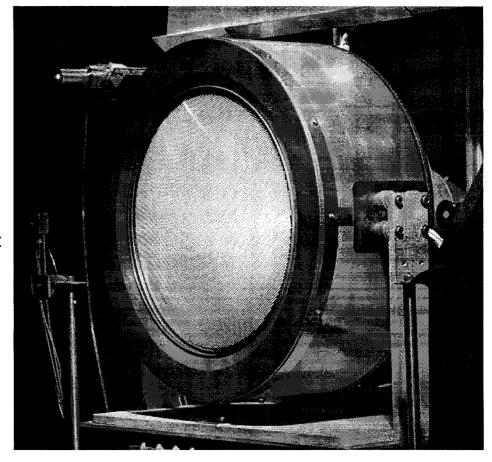
		PPU	Engine						-
NSTAR	Mission	Input	Input	Calculated	Main	Cathode	Neutralizer	Specific	Total
Throttle	Throttle	Power	Power	Thrust	Flow	Flow	Flow Rate	Impulse	Thruster
Level	Level	(kW)	(kW)	(mN)	Rate	Rate	(sccm)	(s)	Efficiency
					(secm)	(sccm)			
15	111	2.567	2.325	92.67	23.43	3.70	3.59	3127	0.618
14	104	2.416	2.200	87.87	22.19	3.35	3.25	3164	0.624
13	97	2.272	2.077	83.08	20.95	3.06	2.97	3192	0.630
12	90	2.137	1.960	78.39	19.86	2.89	2.80	3181	0.628
11	83	2.006	1.845	73.60	18.51	2.72	2.64	3196	0.631
10	76	1.842	1.717	68.37	17.22	2.56	2.48	3184	0.626
9	69	1.712	1.579	63.17	15.98	2.47	2.39	3142	0.618
8	62	1.579	1.456	57.90	14.41	2.47	2.39	3115	0.611
7	55	1.458	1.344	52.67	12.90	2.47	2.39	3074	0.596
6	48	1.345	1.238	47.87	11.33	2.47	2.39	3065	0.590
5	41	1.222	1.123	42.61	9.82	2.47	2.39	3009	0.574
4	34	1.111	1.018	37.35	8.30	2.47	2.39	2942	0.554
3	27	0.994	0.908	32.12	6.85	2.47	2.39	2843	0.527
2	20	0.825	0.749	27.47	5.77	2.47	2.39	2678	0.487
1	13	0.729	0.659	24.55	5.82	2.47	2.39	2382	0.472
0	6	0.577	0.518	20.69	5.98	2.47	2.39	1979	0.420

Identifying Potential Failure Modes is Critical

- Launch vehicle experience shows most failure modes are due to :
 - Unknown causes
 - Previously unrecognized failure modes
 - Poorly-understood failure modes
 - Manufacturing errors that affect known failure modes
- Event-consequent failures result from the improper fabrication and/or operation of a component
 - We are assuming that fabrication related failures are identified and corrected by inspection and testing of the flight hardware as was done successfully for DS1
 - Failures due to improper component operation are assumed to be eliminated through implementation of the NSTAR specifications
 - There is no way to control the risk from unknown failure modes
 - Therefore identifying the critical failure modes is of utmost importance!

Methods for Identifying Wear-Out Failure Modes

Testing


- 13,780 total test hours on 4 EM thrusters
 - 8,192 hrs on one thruster (88-kg throughput)
- 12,800 flight thruster hours (and counting)
 - 9,300 hrs on FT2
 - 3,500 hrs in flight (FT1)
- 99,562 hours of cathode testing

Long-Duration Testing Used To:

- Identify failure modes
- Characterize the environment and loads that drive failure modes
- Anchor models used in the analyses
- Characterize performance variation vs. propellant throughput

Experience

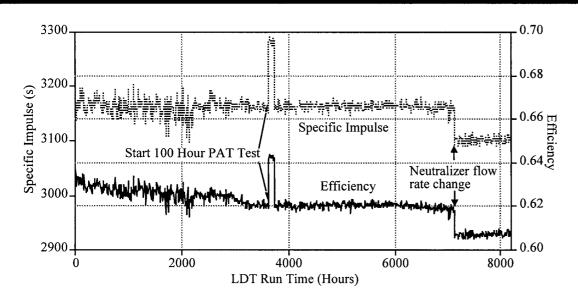
- Failure modes observed in 65 previous endurance tests
- Plasma contactor experience
- Hughes experience

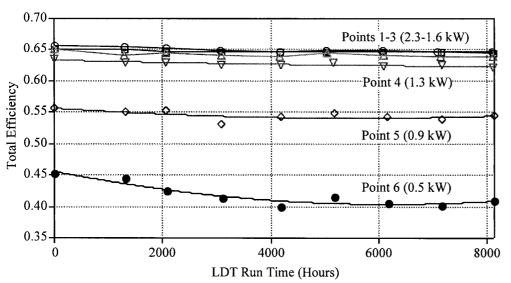
There is a vast body of experimental data on ion engine testing -- it would be very unlikely, based on this experimental experience to find an unknown failure mode for the NSTAR operating conditions

Top 10 List of Engine Wear-Out Failure Modes

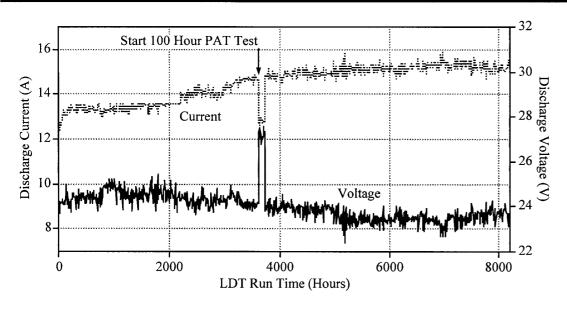
- Electron-backstreaming due to enlargement of the accelerator grid apertures by ion sputtering
- ② Structural failure of the accelerator grid by charge-exchange ion erosion
- 3 Structural failure of the screen grid due to ion sputtering
- ④ Unclearable short between the screen and accelerator grids by one or more flakes of sputter-deposited material
- ⑤ Cathode insert failure
- ® Rogue hole formation resulting in electron-backstreaming or structural failure of the accelerator grid
- Keeper orifice plate structural failure of the due to ion sputtering
- ® Neutralizer orifice plate erosion due to plume mode operation
- ① Unclearable short between the cathode and the keeper electrode (soft failure)

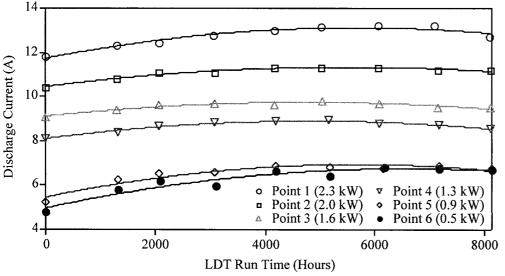
03/29/2000


What We Learned From the NSTAR Ion Engine Endurance Testing


03/29/2000

Thruster Performance was Excellent Over the 8,200-hr Test


- Very Little Performance Change After the First 4,000 hours (44 kg throughput)
- Isp constant after first
 4,000 hours, except where flows have changed

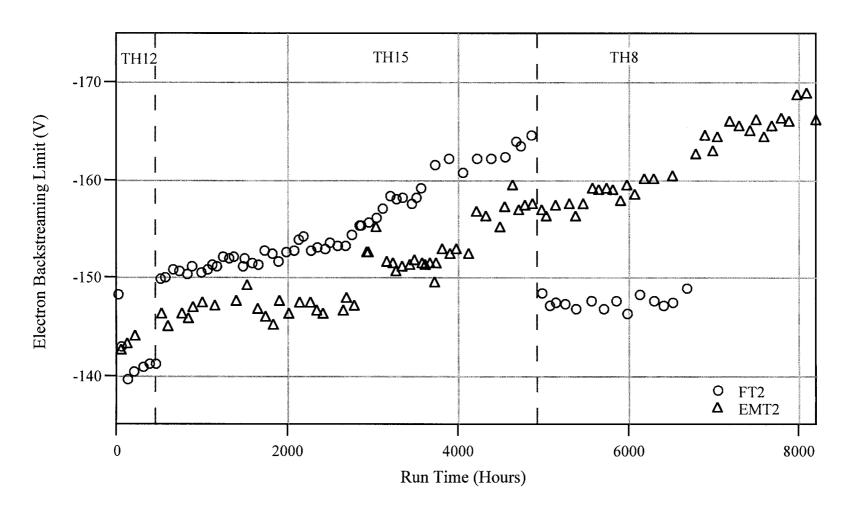

 Low power point performance loss is more significant

Discharge Behavior was Outstanding Over the 8,200-hr Test

- Discharge voltage is remarkably low -results in long engine life
- Discharge current increases with time at all throttle levels due to grid wear
- Component electrical isolation was good for entire test

03/29/2000

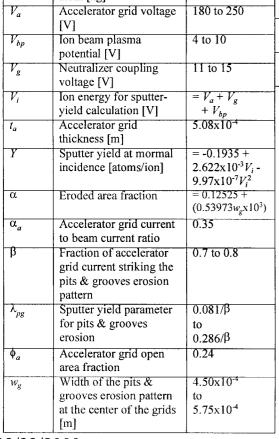
Failure Modes

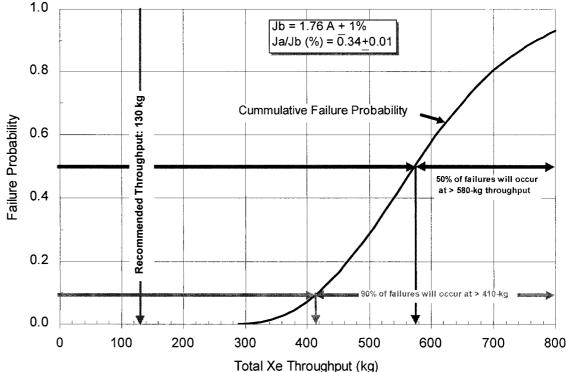

- 1 Electron-backstreaming due to enlargement of the accelerator grid apertures by ion sputtering
- ② Structural failure of the accelerator grid by chargeexchange ion erosion

Failure Mode 1 Electron-Backstreaming

• The Flight Spare Thruster behaves like the Engineering Model Thruster (Magnitude Difference Reflects a Slight Difference in Grid Separation)

Combined Failure Modes 1 & 2 Accelerator Grid Failure

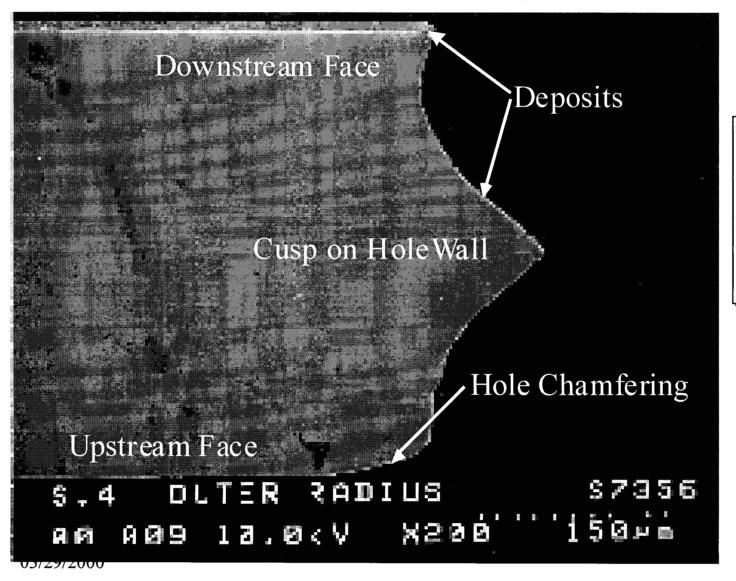



Symbol	Definition	Values	Symbol	Definition	Values
A_b	Active grid area [m2]	0.06587	d_0	Accelerator grid hole	1.27x10 ⁻³
e	Electron charge [coul.]	1.6x10 ⁻¹⁹	-	diameter after the cusp has been removed [m]	
f_a	Accelerator grid mass loss flatness parameter	0.41 to 0.61	$-l_g$	Screen-Accelerator grid gap [m]	5.9x10 ⁻⁴ to 6.6x10 ⁻⁴
J_b	Beam Curent [A]	1.76 + 1%	N_h	Number of holes in the accelerator grid	15,400
m_g	Mass of screen grid atom [kg]	1.59x10 ⁻²⁵	T	Run Time [s]	
V_a V_{bp}	Accelerator grid voltage [V] Ion beam plasma	180 to 250 4 to 10	λ_h	Sputter yield parameter for hole erosion	0.5 to 1.0
•	potential [V] Neutralizer coupling	11 to 15	ρ	Density of accelerator grid	10220
V_g	voltage [V]			material [kg/m³]	
V_i	Ion energy for sputter-	$=V_a+V_g$		1.0	

$$T_{ag} = \frac{A_b (1 - \phi_a) \alpha f_a e \rho t_a}{J_b \alpha_a \beta Y \lambda_{pg} m_g}$$

$$T_{eb} = \left(D^2 - d_0^2\right) \left(\frac{\pi \rho t_a e f_a N_h}{4J_b \alpha_a Y m_g (1 - \beta) \lambda_h}\right)$$

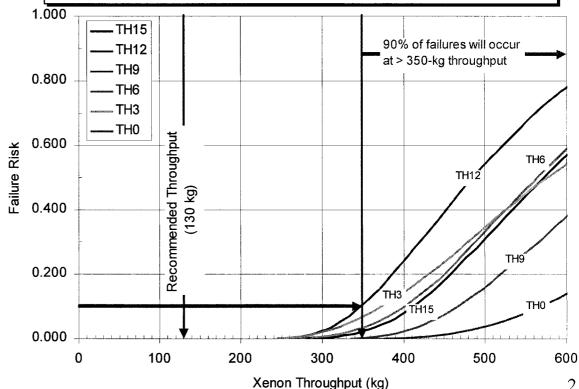
At 130-kg Throughput the Accelerator grid has a factor of 3.1 margin before the failure risk reaches 10%



Failure Mode 3 Wear and Deposition Sites on the Screen Grid

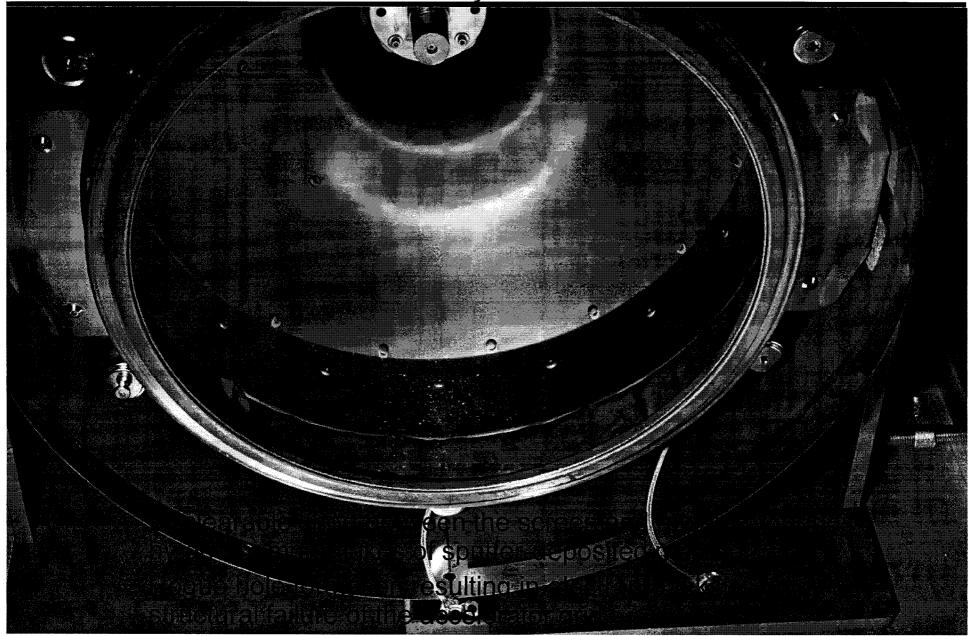
③ Structural failure of the screen grid due to ion sputtering

There is essentially no erosion on the screen grid after 8,200 hours of operation (88 kg throughput)

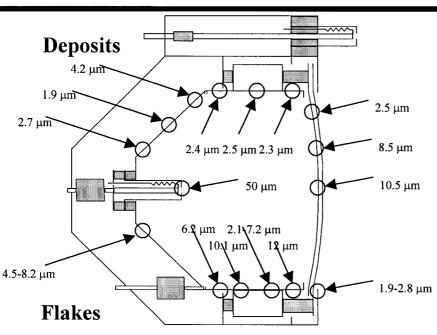

Failure Mode 3 Screen Grid Erosion

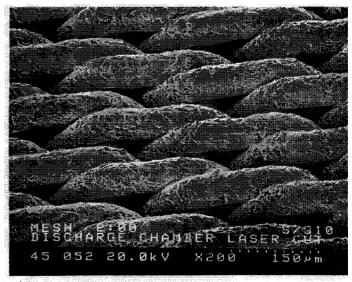
Symbol	Definition	Values
A_b	Active grid area [m2]	0.06587
e	Electron charge [coul.]	1.6x10 ⁻¹⁹
f_b	Beam current flatness	0.40 to 0.46
f_d	parameter Double ion ratio correction	1.40 to
Jd	to centerline parameter	1.40 to
J_b	Beam Curent [A]	1.76 + 1%
m_g	Mass of screen grid atom [kg]	1.59x10 ⁻²⁵
R_{+}^{++}	Measured double to single ion current ratio	0.15 to 0.20
t_s	Screen grid thickness [m]	3.80x10 ⁻⁴
V_d	Discharge voltage [V]	24.5 to 26.0
Y_+	Single ion sputter yield = $1.06 \times 10^{-5} + (V_{a}-24.8)^2$ [atoms/ion]	+50%
Y ₊₊	Double ion sputter yield = $1.06 \times 10^{-5} + (2V_{d}-24.8)^2$ [atoms/ion]	+50%
ρ	Density of screen grid material [kg/m3]	10220
ϕ_i	Screen grid transparency to ions	0.82
ϕ_s	Screen grid open area fraction	0.67

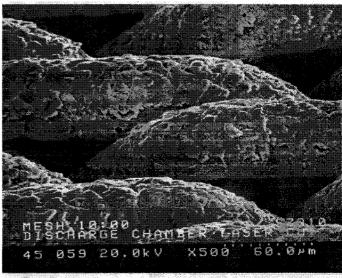
$$T_{sg} = \frac{t_s \phi_i f_b e \rho A_b (1 - \phi_s) (1 + f_d R_+^{++})}{J_b m_g (1 - \phi_i) \left(Y_+ + \frac{f_d}{2} R_+^{++} Y_{++} \right)}$$


At 130-kg Throughput the Screen grid has a factor of 2.7 margin before the failure risk reaches 10%

Failure Modes 4 & 6 Discharge Chamber After 8.2-khr Test is Remarkably Flake Free

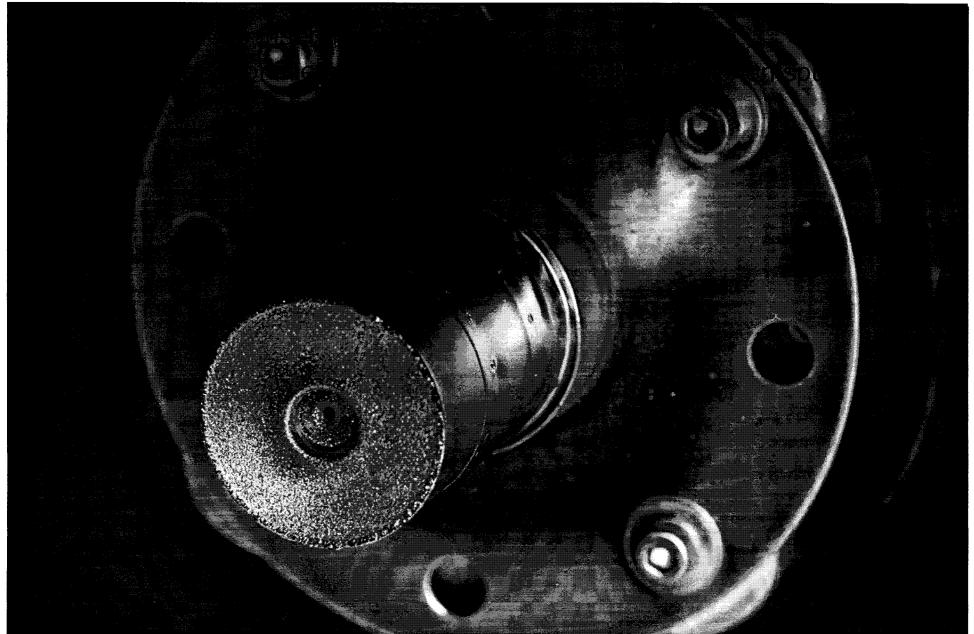



Failure Modes 4 & 6 Deposit and Flake Thicknesses



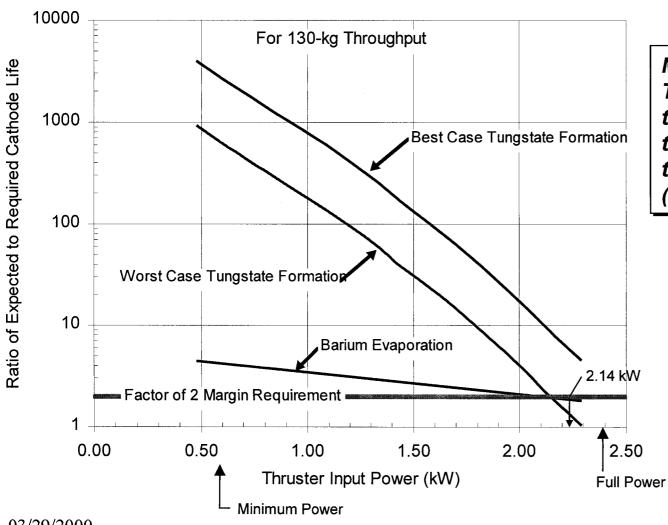
- Sputter-containment mesh will retain flakes up to 30 μm in thickness
- Don't expect a deposition thickness greater than approximately 15 μm after a throughput of 130 kg at full power resulting in a factor of 2 margin until flakes are expected
- Most of the deposited molybdenum originates from the erosion of the accelerator grid apertures which decreases with throttle level.
- Grid clear circuit capable of clearing a molybdenum wire 50 μm in diameter

MESH 2:00



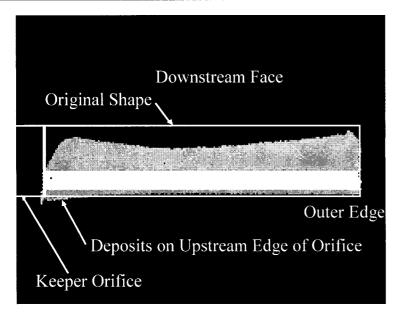
MESH 10:00

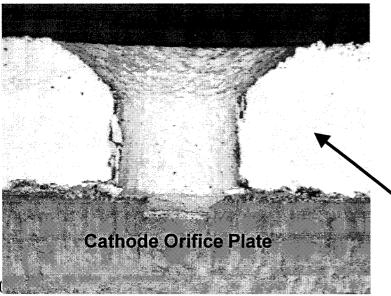
Failure Modes 5 & 7 Main Cathode is in Excellent Condition After the 8.2-khr Test



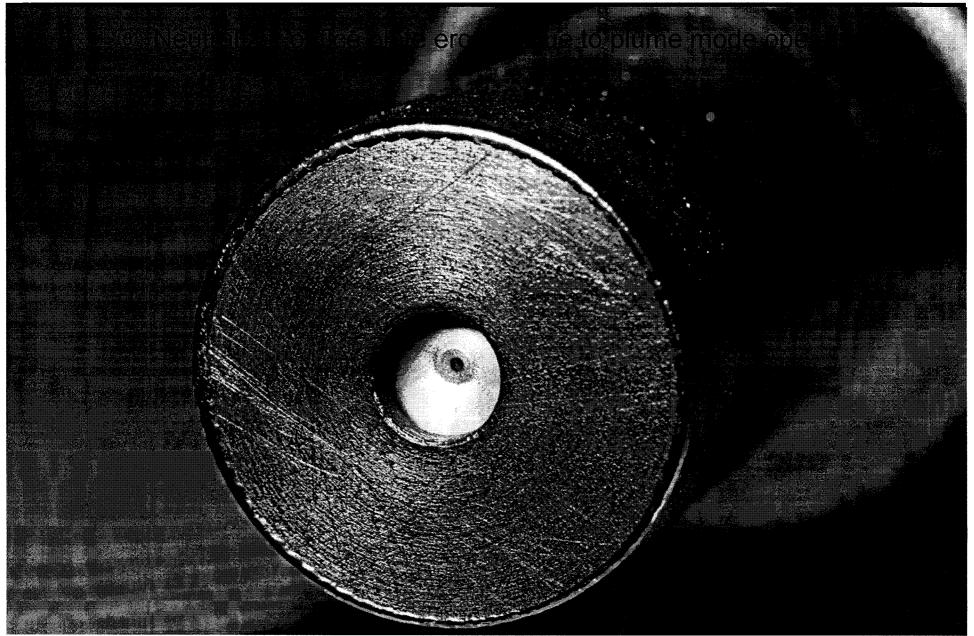
Failure Mode 5 Cathode Insert Life

Cathode insert failure



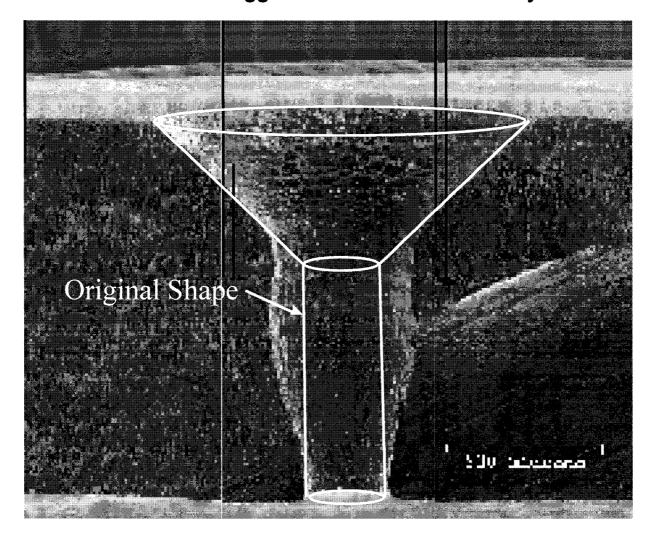

Margin for 130-kg Throughput is greater than a factor of 2 provided the average engine throttle level is < 2.14 kW (93% of full power)

Failure Mode 7 Erosion on the Discharge Cathode Assembly Occurs Only on the Keeper Plate


Discharge keeper plate wear:

- Plate Thinning (34% ± 2% of the original thickness was eroded) after 88-kg throughput
 - Linear extrapolation would result in erosion through ~51% of the plate thickness after a throughput of 130 kg
- Deposits on upstream surfaces (up to 50 μm thick)
- Slight wear on the keeper-plate to keeper-tube weld
- Increase keeper plate thickness from 1.5 mm to 2.0 mm to provide factor of 2.6 margin at a throughput of 130 kg
- Discharge cathode orifice plate shows *virtually no erosion*

Failure Mode 8 Neutralizer is in Excellent Condition After the 8.2-khr Test



Failure Mode 8 Neutralizer Cathode

Wear Observed in the Orifice Only, But Very Little Change in Characteristics Over the Last 6,000 hours of the Test Suggest That This is the Steady-State Geometry

03/2

Service Life Summary

Failure Mode	Margin for 130-kg Throughput	Comment
1. Electron-Backstreaming	210%	10% failure risk at a throughput of 410 kg
2. Accelerator Grid Structural Failure	210%	10% failure risk at a throughput of 410 kg
3. Screen Grid Structural Failure	170%	10% failure risk at a throughput of 350 kg
4. Screen/Accelerator Grid Short (unclearable)	100%	In flake thickness
5. Cathode Insert Failure	> 100%	Provided the average engine throttle level is less than or equal to 2.14 kW
6. Rogue Hole Formation From Flakes	100%	in flake thickness
7. Keeper Orifice Plate Structural Failure	160%	After increasing the keeper plate thickness for 1.5 mm to 2.0 mm
8. Neutralizer Orifice Plate Erosion	unknown (but not a credible failure mode)	Operational constraint on neutralizer flow to stay in the spot mode
9. Cathode Heater Failure (<1000 cycles required)	570%	10% failure risk after 6680 on/off cycles (based on Space Station plasma contactor data)
10. Cathode/Keeper Short	unknown	Soft failure

- Existing NSTAR Program Will Demonstrate 125-kg Throughput by the End of this Year
- Deep Space Exploration Focused Technology Program Will Extend this Test to > 200 kg Throughput by Jan. 2002

NSTAR Risks Retired by the Flight on DS1

- Guidance, Navigation and Control of an SEP spacecraft is not more difficult with an SEP spacecraft, just different
- Mission Operations Costs -- the electrical nature of SEP lends itself well to autonomous operation resulting in essentially no significant increase in mission operations cost for SEP vehicles
- Contamination of the spacecraft by the SEP system can easily be handled through proper design
- Science Measurements of the solar wind can be made even during SEP operation
- Communications -- No impact of the SEP system could be detected
- Electromagnetic compatibility of the SEP system with the spacecraft requires careful engineering, but is easily tractable

Conclusions

- NSTAR based SEP is a flight-validated technology
- With the NSTAR design and an operational scenario in which the average engine throttle level is less than 2.14 kW, the NSTAR ion engine is good for a throughput of 130 kg
 - Outbound SEP missions will naturally have average power levels less than 2.14 kW (CNSR, for example, is 1.84 kW)
 - Operation of multiple engines simultaneously is expected to have no significant impact on the engine life